AI agents break rules under everyday pressure
200 points - last Thursday at 10:52 AM
SourceComments
Now we've invented automation that commits human-like error at scale.
I wouldn't call myself anti-AI, but it does seem fairly obvious to me that directly automating things with AI will probably always have substantial risk and you have much more assurance, if you involve AI in the process, using it to develop a traditional automation. As a low-stakes personal example, instead of using AI to generate boilerplate code, I'll often try to use AI to generate a traditional code generator to convert whatever DSL specification into the chosen development language source code, rather than asking AI to generate the development language source code directly from the DSL.
I have a friend who is a systems engineer, working at a construction company building datacenters. She tells me that someone has to absorb the risk and uncertainty in the global supply chain, and if there are contractual obligation to guarantee delivery, then the tendency is to start straying into unethical behavior, or practices that violate controls and policies.
This has as much to do with taking the slack out of the system. Something, somewhere is going to break. If you tell an agenic AI that it must complete the task by a deadline, and it cannot find a way to do that within ethical parameters, it starts searching beyond the bounds of ethical behavior. If you tell the AI it can push back, warn about slipping deadlines, that it is not worth taking ethical shortcuts to meet a deadline, then maybe it wonāt.
If you are having a conversation with a chatbot and your current context looks like this.
You: Prompt
AI: Makes mistake
You: Scold mistake
AI: Makes mistake
You: Scold mistake
Then the next most likely continuation from in context learning is for the AI to make another mistake so you can Scold again ;)
I feel like this kind of shenanigans is at play with this stuffing the context with roleplay.
Excited to be releasing cupcake at the end of this week. For deterministic and non-deterministic guardrailing. It integrates via hooks (we created the feature request to anthropic for Claude code).
I ran this experiment: https://github.com/lechmazur/emergent_collusion/. An agent running like this would break the law.
"In a simulated bidding environment, with no prompt or instruction to collude, models from every major developer repeatedly used an optional chat channel to form cartels, set price floors, and steer market outcomes for profit."
It looks like the training data has plenty of those examples, but the models donāt have enough grounding or warnings before doing them. I wish there were a PleaseDontDoAnythingStupidEval for software engineering.
Jeez they really ARE becoming human like
LLMs are trained on human behavior as exhibited on the Internet. Humans break rules more often under pressure and sometimes just under normal circumstances. Why wouldn't "AI agents" behave similarly?
The one thing I'd say is that humans have some idea which rules in particular to break while "agents" seem to act more randomly.
AI agents don't think, don't have a concept of time, and don't experience pressure.
I'm tired of these articles anthropomorphizing a probability engine.
1. Open mode during learning, where they take everything that comes from the data as 100% truth. The model freely adapts and generalizes with no constraints on consistency.
2. Closed mode during inference, where they take everything that comes from the model as 100% truth. The model doesn't adapt and behaves consistently even if in contradiction with the new information.
I suspect we need to run the model in the mix of the two modes, and possibly some kind of "meta attention" (epistemological) on which parts of the input the model should be "open" (learn from it) and which parts of the input should be "closed" (stick to it).